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1. Introduction

Vibration problems of beams or plates with discrete systems are very important because of the
practical applications of the vibration analysis of this type of compound systems. The problems of
vibrations of plates with attachments have been the subject of many papers (e.g., the Refs. [1–15]).
Most of the papers are devoted to the vibrations of plates with rigidly mounted concentrated
masses or supports located at the edge or at interior points. The vibration of plates with elastically
mounted masses are considered in Refs. [2,6,14]. The investigations lead to conclusions
concerning the effect of the attachments on vibrations as well as the utility of the applied
methods to solutions of the stated vibration problems.

In Ref. [1] the exact solution of the problem of vibration of a rectangular plate with rigid
supports at inner points has been given. The considerations concern the plate with two opposite
edges simply supported. Ref. [2] is devoted to the dynamics of plates and shells with concentrated
masses. In a part of the work the authors deal with the problem of the free vibration of plates and
shells with oscillators. The frequency analysis of the system with the use of the Green’s function
method is presented. The method of superposition was exploited in Refs. [3,4] to solve free
vibration problems of plates with concentrated attachments. The technique has been also
successfully employed in many vibration problems concerning various cases of rectangular plates.
In Refs. [5–9] the Rayleign–Ritz method was applied. The method was used in the cases of
uniform rectangular plates with attachments for different boundary conditions as well as plates of
polygonal shape. The flexibility function approach has been applied in Refs. [10,11] in the analysis
of point supported rectangular plates. In this approach a fictitious foundation simulating the
points supports in plates was introduced. In Ref. [12] the free vibration analysis of plates with
elastic point supports, line supports and uniformly distributed supports is presented. The analysis
was performed by using the finite strip element method. The application of the Green’s function
method to the free vibration problem of plates with attachments was presented in Refs. [13–15].
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The analytical form of the frequency equations and mode shapes was obtained for rectangular
plates with two opposite edges simply supported.

The problem of the transverse free vibrations of a rectangular plate with discrete systems
attached at arbitrary points of the plate if considered here. The exact solution of the problem is
obtained by using a Green’s function method. In contrast to numerical method (e.g., the finite
element method), the presented method leads to an analytical form of the solution and permits
qualitative estimation of the influence of the parameters characterizing the system on its free
vibration. Because the problems of vibrations of plates with elastically mounted masses and with
elastic supports can be treated as particular cases of the ones considered here, the presented
solution comprises a wide range of issues. The effect of the location of a discrete system attached
to a plate on the eigenfrequencies of the combined system has been numerically investigated.

2. Theory

Consider a rectangular plate with N discrete systems attached to it at points (xi,yi), i ¼ 1; 2, y,
N. The ith discrete system is composed of ni masses and springs combined in series (see Fig. 1).
The plate deflection w(x,y,t) is governed by the following differential equation:

Dr4w þ rwtt ¼
XN

i¼1

ki1½zi1ðtÞ � wðxi; yi; tÞ�dðx � xiÞdðy � yiÞ; ð1Þ

where D is the flexural rigidity, r is the mass density per unit area of the plate, ki1 are the stiffness
coefficients of the translational springs, r4 ¼ @4=@x4 þ 2@4=@x2@y2 þ @4=@y4 is the biharmonic
operator and d( ) is the Dirac delta function. Eq. (1) is accompained by appropriate boundary
conditions.

Fig. 1. A sketch of the system considered: the jth discrete system of nj degree-of-freedom attached at the plate point

(xj,yj).
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The displacements zij(t) of the masses mij (i ¼ 1; 2, y, N, j=1, 2, y, ni) are governed by
equations, which are written for three cases:

1. If ni=1, then

mi1
d2zi1ðtÞ

dt2
þ ki1ðzi1ðtÞ � wðxi; yi; tÞÞ ¼ 0: ð2Þ

2. If ni=2, then

mi1
d2zi1ðtÞ

dt2
þ ki1ðzi1ðtÞ � wðxi; yi; tÞÞ þ ki2ðzi1ðtÞ � zi2ðtÞÞ ¼ 0; ð3Þ

mi2
d2zi2ðtÞ

dt2
þ ki2ðzi2ðtÞ � zi1ðtÞÞ ¼ 0: ð4Þ

3. If ni>2, then

mi1
d2zi1ðtÞ

dt2
þ ki1ðzi1ðtÞ � wðxi; yi; tÞÞ þ ki2ðzi1ðtÞ � zi2ðtÞÞ ¼ 0; ð5Þ

mij

d2zijðtÞ
dt2

þ kijðzijðtÞ � zij�1ðtÞÞ þ kijþ1ðzijðtÞ � zijþ1ðtÞÞ ¼ 0 for j ¼ 2; y; ni � 1; ð6Þ

mini

d2zini
ðtÞ

dt2
þ kini

ðzini
ðtÞ � zini�1ðtÞÞ ¼ 0: ð7Þ

In order to find the natural frequencies of the system, o, one assumes that

wðx; tÞ ¼ %WðxÞcos ot; zijðtÞ ¼ %Zij cos ot: ð8Þ

Taking Eq. (8) into account in Eqs. (1)–(7) and introducing dimensionless quantities, one obtains
(the case of ni>2 is presented below):

@4W

@Z4
þ 2F2 @4W

@x2@Z2
þ F4@

4W

@x4
� F4l4W ¼ �F3

XN

i¼1

Ki1ðW ðxi; ZiÞ � Zi1Þdðx� xiÞdðZ� ZiÞ; ð9Þ

�l4Zi1 þ b4
i1½Zi1 � W ðxi; ZiÞ� þ gi1b

4
i1ðZi1 � Zi2Þ ¼ 0; ð10Þ

�l4Zij þ b4
ij½Zij � Zij�1� þ gijb

4
ijðZij � Zijþ1Þ ¼ 0; j ¼ 2;y; ni � 1; ð11Þ

�l4Zini
þ b4

ini
½Zini

� Zini�1� ¼ 0; ð12Þ

where x¼x=a; Z¼y=b; W ¼ %W=a; xi ¼ xi=a; Zi¼yi=b; F¼b=a; l4¼o2a4r=D; Zij ¼ %Zij=a;
Kij ¼ kija

2=D; Mij ¼ mij=a2r; gij ¼ Kijþ1=Kij and b4
ij ¼ ðra4=DÞðkij=mijÞ:

The expression W ðxi; ZiÞ � Zi1; which occurs in Eq. (9), may be written by using Eqs. (10)–(12)
in the following form:

W ðxi; ZiÞ � Zi1 ¼ Qini
W ðxi; ZiÞ: ð13Þ
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Here the coefficients Qini
for ni=1, 2 and 3, are [16]:

Qi1 ¼ 1þ
1

ki1
; Qi2 ¼ 1þ

1

ki1 � gi1ð1þ 1=ki2Þ
;

Qi3 ¼ 1þ
1

ki1 � gi1½1 þ 1=ðki2 � gi2ð1þ 1=ki3ÞÞ�
; ð14Þ

where kij ¼ l4=b4
ij � 1: The expressions Qi2 and Qi3 may be written symbolically, by applying the

notation used for continued fractions [17], as

Qi2 ¼ 1 þ
1

ki1 � gi1 þ
�gi1

ki2
; Qi3 ¼ 1þ

1

ki1 � gi1 þ
�gi1

ki2 � gi2 þ
�gi2

ki3
:

Generally, one has

Qini
¼ 1þ

1

ki1 � gi1 þ
�gi1

ki2 � gi2 þ
�gi2

ki3 � gi3 þ
?

þ
�gini�1

kini

: ð15Þ

For determination of the vibration frequencies of the system the Green’s function G of the
corresponding differential problem has been applied. The function is a solution of the differential
equation

@4G

@Z4
þ 2F2 @4G

@x2@Z2
þ F4@

4G

@x4
� F4l4G ¼ dðx� zÞdðZ� yÞ ð16Þ

and in respect to variables x and Z, it satisfies the same boundary conditions as the function W.
The Green’s functions for Levy isotropic plates are given in Ref. [13], and for orthotropic plates
they are presented in Ref. [18].

The following equation has been obtained by using the properties of the Green’s function and
Eqs. (9) and (13):

W ðx; ZÞ ¼ �F3
XN

i¼1

Ki1Qini
W ðxi; ZiÞGðx; Z; xi; Zi; lÞ: ð17Þ

Substituting now ðx; ZÞ ¼ ðxk; ZkÞ for k ¼ 1; 2; y; N; successively into Eq. (17), one obtains a
system of N homogeneous, linear equations with respect to displacements W ðxi; ZiÞ; i ¼
1; 2;y;N: This equation system written in the matrix notation has the form

AW ¼ 0; ð18Þ

where A ¼ ½aik�1pi;kpN ; aik ¼ F3Kk1Qknk
Gðxi; Zi; xk; Zk; lÞ þ dik and dik is the Kronecker delta.

The requirement of a non-trivial solution of Eq. (18) yields the eigenvalue equation

det A ¼ 0: ð19Þ

This equation with respect to non-dimensional frequencies is then solved numerically.

3. Discussion and numerical examples

Consider the system consisting of a rectangular plate and a single oscillator attached to this
plate at point (x1,Z1). The frequency equation for the system, which is obtained from Eq. (19), has
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the form

F3K11Q1n1
Gðx1; Z1; x1; Z1; lÞ þ 1 ¼ 0; ð20Þ

where Qin1
for n1=1, 2 and 3, are given by Eq. (14), and for arbitrary n1, by Eq. (15). The mode

shapes corresponding to the eigenfrequencies lmn ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

mnr=D4
p

; m; n ¼ 1; 2;y ; determined
from Eq. (20), are obtained on the basis of Eq. (17) in the form

Wmnðx; ZÞ ¼ CmnGðx; Z; x1; Z1; lmnÞ; ð21Þ

where Cmn is a constant. If K11 tends to infinity in Eq. (20) for n1=1, then the obtained frequency
equation corresponds to a system of a plate with rigidly attached mass. This equation is as
follows:

F4l4M11Gðx1; Z1; x1; Z1; lÞ � 1 ¼ 0: ð22Þ

Similarly, if M11 tends to infinity, then Eq. (20) for n1=1, assumes the form of the frequency
equation for a plate with intermediate elastic support

F3K11Gðx1; Z1; x1; Z1; lÞ þ 1 ¼ 0: ð23Þ

An elastic support or a concentrated mass attached to a plate, causes changes of its natural
frequencies. It is well known that an elastic support leads to the increase of the plate frequencies,
and a rigidly attached mass decreases the frequencies [19]. Comparing Eq. (20) with Eqs. (22) and
(23) one can show, that a single oscillator increases or decreases the frequencies of the plate
depending of the sign of the expression Q1n1

: An oscillator added to the plate decreases the
frequencies of the original system when Q1n1

o0; and increases the frequencies when Q1n1
> 0: For

instance, the condition Q11 > 0; for l > b11 is satisfied. Therefore, the frequencies greater than b11

are increased and the other are decreased in comparison with frequencies of the plate without
oscillator.

The effect of the location of a discrete system attached to a plate on the eigenfrequencies of the
combined system has been numerically investigated. In the first example, the calculation was
performed for the system, which consists of an oscillator and an isotropic, quadratic plate simply
supported at two opposite edges (x=0 and 1) and free at the other (S–F–S–F). The oscillator,
which is characterised by dimensionless quantities: M1=1.0 and K1=1000, is mounted at the
point ðx1; Z1Þ of the plate. The Poisson coefficient is assumed n=0.3. The dimensionless free
vibration frequencies of the isolated plate, Omn ¼ l2

mn; are: O11=9.6314, O12=16.1348,
O13=36.7256, O21=38.9449 (the indices show the mode of vibration), and the frequency
parameter of the isolated oscillator is O*

1=b2
11=31.6228. The contour plots of the functions

Omn=Omn(x1,Z1) are presented in Fig. 2. Figs. 2(a), (b) and (d) correspond to the vibration modes
of the plate: (1,1), (1,2) and (1,3), respectively, and Fig. 2(c) corresponds to the vibration mode of
the oscillator.

If x1=0 or x1=1 then the frequencies of the plate without an oscillator (Figs. 2(a), (b) and (d))
or the frequency of the grounded oscillator (Fig. 2(c)), are obtained. Two frequencies of the
combined system are lower than the frequency of the isolated oscillator. These frequencies
are decreased in comparison to the corresponding frequencies of the plate without the oscillator
(Figs. 2(a) and (b)). All the other frequencies of the plate are greater than the frequency O*

1 and the
frequencies of the combined system corresponding to them are increased. The thick-line in
Fig. 2(c) appoints the characteristic locations of the oscillator on the plate: the free vibration
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frequency of the combined system with the oscillator attached at the arbitrary point of this line is
equal to the frequency of the isolated oscillator. In Ref. [20] it has been shown, that in this case,
the oscillator is attached at a node of a normal mode of the structure. Here it results from
Eqs. (20) and (21).

The four mode shapes of the plate corresponding to the system of the S–F–S–F plate with the
oscillator mounted at an established point (x1,Z1) are presented in Fig. 3. It is assumed that
the free vibration frequency of the isolated oscillator is O*

1=31.6222 and Z1=0.21. The abscissa of

the location point x1E0.37 is obtained from the equation: Gðx1; Z1; x1; Z1;
ffiffiffiffiffiffi
O	

1

q
Þ ¼ 0: This plate

point belongs to the distinguished curve in Fig. 2(c) and it belongs also to the node line of the
mode shape corresponding to the frequency O*

1. The oscillator causes shifting of the frequencies in

Fig. 2. Contour lines for the functions On=On(x1,Z1), n=1,y, 4, corresponding to first four mode vibration of a square

S–F–S–F plate with one-degree-of-freedom discrete system mounted at plate point ( x1,Z1); M1=1.0, K1=1000.
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comparing with those obtained for the plate without attachments as it is shown above. For the
assumed location of the oscillator, the five dimensionless free vibration frequencies of the
compound system are: O11=5.2416, O12=13.3870, O*

1=31.6228, O13=36.7613 and O21=43.0500.
The second example is concerned with the system of the S–F–S–F quadratic plate with two-

degree-of-freedom discrete system, mounted at the point (x1,Z1) of the plate. In this case (n1=2),
on the basis of Eq. (14b), we have

Q12 ¼
l4ðl4 � m4Þ

ðl4 � b	41 Þðl4 � b	42 Þ
;

where m4 ¼ g1b
4
11 þ b4

12 and b	21;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½b4

11 þ m48
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb4

11 þ m4Þ2 � 4b4
11b

4
12

q
�

r
are the dimensionless

frequencies of the isolated discrete system. Because b*
1omob*

2, then the frequencies of the plate
with one discrete system with two degrees of freedom attached, within two intervals, b*

1ol om
and l>b*

2 are increased, and the remaining frequencies are decreased (as compared with the
frequencies of the plate without the discrete system). The discrete system considered here is

Fig. 3. Mode shapes of the square plate with an oscillator attached at the plate point ( x1,Z1)=(0.37;0.21).
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Fig. 4. Contour lines for the functions On=On(x1,Z1), n=1,y, 6, corresponding to first six mode vibration of a square

S–F–S–F plate with two-degree-of-freedom discrete system mounted at plate point (x1,Z1); M1=M2=1.0,

K1=K2=441.
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characterized by the dimensionless quantities: M1=M2=1.0 and K1=K2=441. It follows that the
dimensionless free vibration frequencies of the isolated discrete system are : O*

1=(b11)
2=12.9787,

O*
2=(b12)

2=33.9787 and m2=29.6985. The contour plots of the functions Omn=Omn(x1,Z1) for six
eigenfrequencies of the compound system are presented in Fig. 4. According to the earlier
considerations, the frequencies of the compound system within either of two intervals O*

1oOom2

and O>O*
2 are greater than or equal to the relevant plate frequencies (Figs. 4(c), (e) and (f)). In

this case, two ‘‘additional’’ frequencies appear (except the frequencies corresponding to the plate
eigenfrequencies). They correspond to the discrete system eigenfrequencies (Figs. 4(b) and (d)). If
the discrete system is mounted at the plate points marked by the thick line in Figs. 4(b) and (d)
then the free vibration frequencies of the compound system are equal to the first or second
frequencies of isolated discrete system, respectively.

4. Conclusions

The closed-form solution of the problem of free vibration of a rectangular plate with attached
discrete systems has been presented. The rectangular plate with two opposite edges simply
supported is assumed. Each discrete system of finite degrees of freedom consists of spring–mass
systems. Although the number of discrete systems considered in the numerical examples was
limited to two, the solution may be used for an arbitrary number of discrete systems attached to
the plate. The solution of the problem is obtained by using the Green’s function method.

The discrete system mounted to a plate may cause increases or decreases in the eigenfrequencies
of the combined system as compared with those of the without discrete systems attached. In the
case of a single spring–mass system attached at an interior point of the plate, the frequencies of the
system lower than the spring–mass frequency are decreased and the higher ones—increased, as
compared with corresponding plate frequencies (except at points when the frequencies are
unchanged). The frequencies of a combined system of two-degree-of-freedom discrete system
attached to a plate, are decreased in two finite intervals. Similarly, the frequencies of the n-degree-
of-freedom mounted to a plate determine the intervals of decreasing of the plate frequencies. At
the same time, the remaining frequencies are increased as compared with the plate frequencies.
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